Видео : Самоподготовка : АНО ДПО «УКЦ «УНИВЕРСИТЕТ КЛИМАТА»

Видео

Фильтры для систем вентиляции

Рассматривается классификация фильтров по классам очистки и область применения каждого из них. Также рассматриваются панельные и карманные фильтры – особенности конструкции и эксплуатации.

Расчёт воздухоохладителей

Расчёт воздухоохладителей выполняется в одну формулу и, в целом, напоминает расчёт воздухонагревателей, но есть одна тонкость – в воздухоохладителях обычно выпадает конденсат, который «съедает» часть холодильной мощности. В связи с этим расчёт немного корректируется.

Эквивалентный диаметр воздуховодов

Для того чтобы определить аэродинамическое сопротивление воздуховода произвольного сечения применяется формула эквивалентного диаметра воздуховода. Для прямоугольных воздуховодов она имеет весьма простой вид, и на её основе можно сделать некоторые выводы.

Виды воздухоохладителей

Два основных вида воздухоохладителей, применяемых в системах вентиляции – это водяные и фреоновые воздухоохладители. В рамках видео рассматривается каждый из них.

Виды воздухонагревателей

В системах вентиляции применяются воздухонагреватели двух основных видов – электрические и водяные. В электрических воздухонагревателях нагрев воздуха осуществляется за счёт ТЭНов – трубчатых электронагревателей. В водяных воздухонагревателях повышение температуры воздуха достигается за счёт горячей воды.

Как выбрать мощность кондиционера

Кондиционер предназначен для удаления избытков тепла из помещения, следовательно, для определения мощности кондиционера следует сначала определить величину теплоизбытков.

Правильный и грамотный расчёт мощности включает в себя определение тепла, которое поступает в помещение за счёт солнечной радиации, теплопроводности ограждающих конструкций (стен, окон, пола и потолка), а также за счёт людей, оборудования, приточной вентиляции и освещения.

Как подобрать шумоглушитель

Подбор шумоглушителя осуществляется по двум параметрам — по сечению воздуховода и длине шумоглушителя. Присоединительные размеры шумоглушителя в точности соответствуют типовым сечениям воздуховодов. Длина шумоглушителей, как правило, составляет 300, 600, 900 или 1200 миллиметров.

Методы борьбы с шумом в системах вентиляции

Системы вентиляции, как и любые другие механические системы, шумят. Шум распространяется двумя путями — рассеивается в пространство от работающего оборудования и передаётся от оборудования в канал, то есть в обе стороны воздуховода. Шум создаёт дискомфорт.

Особенности проектирования воздухонагревателей

При проектировании воздухонагревателей в системах вентиляции следует учитывать следующие особенности.

Расчёт воздухонагревателей в системах вентиляции

Расчёт воздухонагревателей в системах вентиляции выполняется по формуле, известной из курса школьной физики.

Рекуперация тепла в системах вентиляции

В современных высокоэффективных системах вентиляции секции рекуперации тепла получили большое распространение. Они предназначены для того, чтобы сэкономить на нагреве наружного воздуха за счёт тепловой энергии внутреннего воздуха. Разберёмся подробнее, как они работают, и какие виды рекуператоров применяются в системах вентиляции.

Состав вытяжной системы вентиляции

Система вытяжной вентиляции служит для удаления отработанного воздуха из помещения. Она включает в себя такие элементы, как вентилятор, шумоглушители, воздушный или обратный клапан, наружная решетка.

Состав приточной системы вентиляции

Основными элементами приточной системы вентиляции являются наружная решетка, воздушный клапан, фильтр, нагреватель воздуха, шумоглушители и вентилятор. О том, в каком порядке они расположены и почему этот порядок именно таков, а также о том, от каких из них можно отказаться при устройстве приточной вентиляции – смотрите наше видео на канале YouTube APIC Russia.

Зачем нужен компрессор в кондиционере

Известно, что компрессор – это основной элемент холодильного контура, но какую роль он выполняет? Компрессор сжимает хладагент, но зачем он это делает? Когда можно обойтись без компрессора, а когда – нельзя? Ответы на эти и другие вопросы – в этом видео.

Реальный и идеальный холодильный коэффициент кондиционера

Холодильная мощность кондиционера в три раза превышает потребляемую. Как такое возможно? Как можно генерировать в три раза больше киловатт, чем реально получено из электросети. Дело в том, что кондиционер тратит электроэнергию не на «создание» холодильной мощности, а на её перенос из другой среды. Причем в идеальных условиях кондиционер мог бы иметь в 10 раз бóльшую холодопроизводительность, чем имеет на самом деле. Идеальный кондиционер способен вырабатывать 37,5 киловатт холода при энергопотреблении в 1 киловатт.

Почему кондиционеры так неэффективны, самый неэффективный элемент кондиционера

Коэффициент полезного действия кондиционера равен отношению его реального холодильного коэффициента к идеальному. Расчёты показывают, что это отношение составляет порядка 8% — немного. Почему коэффициент полезного действия кондиционеров так низок и где происходят основные потери – разбираем в этом видео.

Из чего состоит кондиционер, параметры хладагента в кондиционере

Схема холодильного контура кондиционера, зоны высокого и низкого давления, зоны с газообразным и жидким хладагентом. Состав внутреннего и наружного блоков кондиционеров. Параметры хладагента в различных точках холодильного цикла.

Как вакуумировать кондиционер

Порядок выполнения вакуумирования, применяемый инструмент, применяемое оборудование.

Как измерить потребляемый ток и мощность кондиционера

Измерение электрических характеристик кондиционера – силы тока, потребляемой мощности, напряжения сети. Сравнение с заводскими данными.

Как подключить и проверить подключение однофазного компрессора

Электрическое подключение однофазного компрессора. Понятия пусковой обмотки, рабочей обмотки и пусковой ёмкости. Схема подключения пусковой ёмкости.

Как проверить заводскую заправку фреона в кондиционере

Проверка заводской заправки хладагента в кондиционере путём измерения перегрева на испарителе при работе кондиционера в режиме охлаждения. Алгоритм выполнения проверки, применяемый инструмент, нормальные значения перегрева.

Как проверить пусковую ёмкость однофазного компрессора

Проверка работоспособности пусковой ёмкости, измерение ёмкости, применение различного инструмента для измерения ёмкости.

Как работает ротационный компрессор Принцип работы ротационого компрессора

Принцип работы ротационного компрессора, внутренние компоненты компрессора, метод сжатия, используемый в ротационных компрессорах. Работа отделителя жидкости.

Как работает спиральный компрессор

Принцип работы спирального компрессора, компоненты компрессора. Траектория движения спиралей, зоны всасывания и нагнетания в спиральном компрессоре.

Неисправные пусковые ёмкости. Виды, признаки, влияние на работу компрессора

Причины выхода из строя пусковых ёмкостей, виды неисправных пусковых ёмкостей, визуальное определение неисправных пусковых ёмкостей. Влияние неисправной пусковой ёмкости на работу компрессора и на его электрические характеристики.

Преимущества инверторного кондиционера

Наилучший способ выявить преимущества инверторного кондиционера по сравнению с неинверторным – провести измерения силы тока при полной и неполной нагрузке на кондиционер.

Проблемы с маслом в компрессоре. Как предотвратить вынос масла из компрессора

Причины масляного голодания компрессоров, способы предотвращения выноса масла. Применение масляных отделителей, правильный монтаж трубопроводов.

Два вида спиральных компрессоров

Два варианта исполнения спиральных компрессоров – с зоной всасывания возле спиралей и с зоной всасывания возле электродвигателя. Особенности работы спиральных компрессоров, особенности охлаждения электродвигателей.